
 1

OpenGL Vertex Programming Cheat Sheet

Chris Wynn
cwynn@nvidia.com

NVIDIA Corporation

Overview
This document contains some summary reference information that should be of use when
writing vertex programs. Most of the content contained within comes directly from the
NV_vertex_program specification.

Vertex Attribute Registers
There are a total of 16 vertex attribute registers. Each of these registers holds “per-vertex
data” and may be refered to using two different names. One name refers to each register
by a numerical name, the other name refers to each register by a mnemonic name.

Vertex Attribute Mnemonic
 Register Name Name Mnemonic Meaning
---------------- -------- --------------------
 v[0] v[OPOS] object position
 v[1] v[WGHT] vertex weight
 v[2] v[NRML] normal
 v[3] v[COL0] primary color
 v[4] v[COL1] secondary color
 v[5] v[FOGC] fog coordinate
 v[6] -- --
 v[7] -- --
 v[8] v[TEX0] texture coordinate 0
 v[9] v[TEX1] texture coordinate 1
 v[10] v[TEX2] texture coordinate 2
 v[11] v[TEX3] texture coordinate 3
 v[12] v[TEX4] texture coordinate 4
 v[13] v[TEX5] texture coordinate 5
 v[14] v[TEX6] texture coordinate 6
 v[15] v[TEX7] texture coordinate 7

Table X.3: The mapping between vertex attribute register names, mnemonic
names, and mnemonic meanings.

The mnemonic name can sometimes be useful for making vertex programs easier to
understand, but they are only useful when the programmer loads data that has the same
semantic meaning into them. For example, if the programmer loads the primary color
into v[2], using the mnemonic name may lead to confusion since in this case v[NRML]
contains the primary color, NOT a normal.

mailto:cwynn@nvidia.com

 2

The vertex attribute registers are read-only. In addition, a single instruction may only
read from a single vertex attribute register (i.e. “MUL R0, v[4], v[5];” is not allowed
and will generate an error). It may however, read twice from the same register (i.e.
“MUL R0, v[5], v[5];” is valid and will not generate an error).

Vertex Result Registers
There are 15 vertex result registers. The following table shows the name of each of these
registers along with a description of how the setup and rasterization hardware interprets
these results of the vertex program computation.

Vertex Result Component
Register Name Description Interpretation
-------------- --------------------------------- --------------
 o[HPOS] Homogeneous clip space position (x,y,z,w)
 o[COL0] Primary color (front-facing) (r,g,b,a)
 o[COL1] Secondary color (front-facing) (r,g,b,a)
 o[BFC0] Back-facing primary color (r,g,b,a)
 o[BFC1] Back-facing secondary color (r,g,b,a)
 o[FOGC] Fog coordinate (f,*,*,*)
 o[PSIZ] Point size (p,*,*,*)
 o[TEX0] Texture coordinate set 0 (s,t,r,q)
 o[TEX1] Texture coordinate set 1 (s,t,r,q)
 o[TEX2] Texture coordinate set 2 (s,t,r,q)
 o[TEX3] Texture coordinate set 3 (s,t,r,q)
 o[TEX4] Texture coordinate set 4 (s,t,r,q)
 o[TEX5] Texture coordinate set 5 (s,t,r,q)
 o[TEX6] Texture coordinate set 6 (s,t,r,q)
 o[TEX7] Texture coordinate set 7 (s,t,r,q)

 Table X.1: Vertex Result Registers.
The result registers are write-only. A vertex program may not read a vertex result
register. Additionally, in order for a vertex program to be valid, it must write to the
o[HPOS] register.

Temporary Registers
There are a total of 12 temporary registers. Each of these registers is referred to by the
name ‘Rn’ where n is an integer in [0, 11]. These registers are both read-able and write-
able. These registers are initialized to (0,0,0,0) at each vertex program invocation.

Address Register
The register A0.x is the “address register”. This register is a write-only register and only
allows the ‘x’ component to be written to (i.e. “MOV A0.x, R0;”). This register (with
the ‘.x’ modifier) may be used as an index to a constant register. This register is
initialized to (0,0,0,0) at each vertex program invocation.

 3

Constant Registers
The constant registers are used to access constant data, that’s stored in the constant
memory space. Typically, this is data that does not change on a per-vertex basis. There
are 96 constant registers, each of which is referred to by the name ‘c[n]’ where n is an
integer in [0, 95]. Alternatively, data that is stored in the constant memory space may be
accessed using the address register (i.e. “MOV R0, c[A0.x];”). When used in a normal
vertex program, these registers are read-only. When used in a vertex state program,
these registers are both read-able and write-able. Any given instruction may only
access only a single constant register. However, when reading from a constant register, a
single instruction may use the same constant register for multiple source registers (i.e.
“ADD R0, c[5], c[5];).

The Instruction Set
There are 17 vertex program instructions. Each instruction operates on 4-component
source registers, and generates a result for a single destination register. The instructions
and their respective input and output parameters are summarized in the following table.
 Output
 Inputs (vector or
Opcode (scalar or vector) replicated scalar) Operation
------ ------------------ ------------------ ------------------------
--
 ARL s address register address register load
 MOV v v move
 MUL v,v v multiply
 ADD v,v v add
 MAD v,v,v v multiply and add
 RCP s ssss reciprocal
 RSQ s ssss reciprocal square root
 DP3 v,v ssss 3-comp. dot product
 DP4 v,v ssss 4-comp. dot product
 DST v,v v distance vector
 MIN v,v v minimum
 MAX v,v v maximum
 SLT v,v v set on less than
 SGE v,v v set greater/equal than
 EXP s v exponential base 2
 LOG s v logarithm base 2
 LIT v v light coefficients

Table X.4: Summary of vertex program instructions. "v" indicates a vector input
or output, "s" indicates a scalar input, and "ssss" indicates a scalar output
replicated across a 4-component vector.

Instructions that require a scalar input, must have a modifier (‘.x”, ‘.y’, ‘.z’ or ‘.w’)
indicating which individual component of the 4-component register should be used as the
scalar input. Instructions that generate a replicated scalar output compute a single scalar

 4

result but copy that result to all 4 components of the register (unless output register
masking is applied).

ARL: Address Register Load
The ARL instruction moves the floor of the value of the source register into the address
register.

 Syntax:

 ARL A0.x, src0.C;

 (where ‘C’ is x, y, z, or w)

Notes: The A0.x register may be used to access data in the constant registers
(i.e “MOV R1, c[A0.x];” and “MOV R1, c[A0.x + 9];”).

MOV: Move
The MOV instruction moves the value of the source vector into the destination register.

 Syntax:

 MOV dest, src0;

MUL: Multiply
The MUL instruction multiplies the values of two source registers into the destination
register.

 Syntax:

 MUL dest, src0, src1;

ADD: Add
The ADD instruction adds the values of two source registers into the destination register.

 Syntax:

 ADD dest, src0, src1;

 5

MAD: Multiply and Add
The MAD instruction adds the value of the third source vector to the product of the
values of the first and second two source vectors, writing the result to the destination
register.

 Syntax:

 MAD dest, src0, src1, src2;

RCP: Reciprocal
The RCP instruction inverts the value of the source scalar into the destination register.

 Syntax:

 RCP dest, src0.C;

 (where ‘C’ is x, y, z, or w)

Notes: The reciprocal of exactly 1.0 is exactly 1.0. RCP(-Inf) produces
(-0.0, -0.0, -0.0, -0.0), RCP(-0.0) produces (-Inf, -Inf, -Inf, -Inf), RCP(0.0) produces
(+Inf, +Inf, +Inf, +Inf), and RCP(+Inf) produces (0.0, 0.0, 0.0, 0.0).

RSQ: Reciprocal Square Root
The RSQ instruction assigns the inverse square root of the absolute value of the source
scalar into the destination register.

 Syntax:

 RSQ dest, src0.C;

 (where ‘C’ is x, y, z, or w)

Notes: RSQ(0.0) produces a (+Inf, +Inf, +Inf, +Inf) result. Both RSQ(+Inf) and
RSQ(-Inf) produce a (0.0, 0.0, 0.0, 0.0) result.

 6

DP3: Three-Component Dot Product
The DP3 instruction assigns the three-component dot product of the two source vectors
into the destination register.

 Syntax:

 DP3 dest, src0, src1;

DP4: Four-Component Dot Product
The DP4 instruction assigns the four-component dot product of the two source vectors
into the destination register.

 Syntax:

 DP4 dest, src0, src1;

DST: Distance Vector
The DST instruction calculates a distance vector for the value of two source vectors. The
first source vector is assumed to be of the form (NA, d*d, d*d, NA) and the second
source vector is assumed to be (NA, 1.0/d, NA, 1.0/d), where the value of a component
labeled NA is undefined. The destination register is then assigned (1.0, d, d*d, 1.0/d).

 Syntax:

 DST dest, src0.C0, src1.C1;

 (where ‘C0’ and ‘C1’ is x, y, z, or w)

MIN: Minimum
The MIN instruction assigns the component-wise minimum of the two source vectors into
the destination register.

 Syntax:

 MIN dest, src0, src1;

 7

MAX: Maximum
The MAX instruction assigns the component-wise maximum of the two source vectors
into the destination register.

 Syntax:

 MAX dest, src0, src1;

SLT: Set On Less Than
The SLT instruction performs a component-wise assignment of either 1.0 or 0.0 into the
destination register. 1.0 is assigned if the value of the first source vector is less than the
value of the second source vector. Otherwise, 0.0 is assigned.

 Syntax:

 SLT dest, src0, src1;

SGE: Set On Greater or Equal Than
The SGE instruction performs a component-wise assignment of either 1.0 or 0.0 into the
destination register. 1.0 is assigned if the value of the first source vector is greater than
or equal to the value of the second source vector. Otherwise, 0.0 is assigned.

 Syntax:

 SGE dest, src0, src1;

EXP: Exponential Base 2
The EXP instruction generates an approximation of the exponential base 2 for the value
of a source scalar. This approximation is assigned to the z component of the destination
register. Additionally, the x and y components of the destination register are assigned
values useful for determining a more accurate approximation.

 Syntax:

 EXP dest, src0.C;

 (where ‘C’ is x, y, z, or w)

 8

Note: The exponential base 2 of the source scalar can be better approximated by dest.x *
FUNC(dest.y) where FUNC is some user approximation (presumably implemented by
subsequent instructions in the vertex program) to 2dest.y where dest.y is in [0.0, 1.0).

LOG: Logarithm Base 2
The LOG instruction generates an approximation of the logarithm base 2 for the absolute
value of a source scalar. This approximation is assigned to the z component of the
destination register. Additionally, the x and y components of the destination register are
assigned values useful for determining a more accurate approximation.

 Syntax:

 LOG dest, src0.C;

 (where ‘C’ is x, y, z, or w)

Note: The logarithm base 2 of the absolute value of the source scalar can be better
approximated by dest.x + FUNC(dest.y) where FUNC is some user approximation
(presumably implemented by subsequent instructions in the vertex program) of
log2(dest.y) where dest.y is in [1.0, 2.0).

LIT: Light Coefficients
The LIT instruction is intended to compute ambient, diffuse, and specular lighting
coefficients from a diffuse dot product, a specular dot product, and a specular power that
is clamped to (-128, 128) exclusive. The x component of the source vector is assumed to
contain a diffuse dot product (unit normal vector dotted with a unit light vector, N•L).
The y component of the source vector is assumed to contain a Blinn specular dot product
(unit normal vector dotted with a unit half-angle vector, N•H). The w component is
assumed to contain a specular power, m. The y component of the destination register will
contain the x component of the source register clamped to the range [0.0, 1.0] (i.e. the
clamped diffuse dot product, N•L). If the x component of the source register is less than
or equal to zero, the z component of the destination register will contain the value 0.0.
Otherwise, the z component of the destination register will be set to the following:
MAX(src0.y, 0)m where m = src0.w clamped to the range (-128, 128) exclusive. This is
the same as MAX(N•H, 0)m which corresponds to the specular lighting contribution.
Both the z component and the w component of the destination register are set to 1.0.

 Syntax:

 LIT dest, src0;

	OpenGL Vertex Programming Cheat Sheet
	Chris Wynn
	NVIDIA Corporation
	Overview

	Vertex Attribute Registers
	Table X.3: The mapping between vertex attribute register names, mnemonic names, and mnemonic meanings.
	Vertex Result Registers
	Table X.1: Vertex Result Registers.
	Temporary Registers
	Address Register
	Constant Registers
	The Instruction Set
	Table X.4: Summary of vertex program instructions. "v" indicates a vector input or output, "s" indicates a scalar input, and "ssss" indicates a scalar output replicated across a 4-component vector.
	ARL: Address Register Load
	MOV: Move
	MUL: Multiply
	ADD: Add
	MAD: Multiply and Add
	RCP: Reciprocal
	RSQ: Reciprocal Square Root
	DP3: Three-Component Dot Product
	DP4: Four-Component Dot Product
	DST: Distance Vector
	MIN: Minimum
	MAX: Maximum
	SLT: Set On Less Than
	SGE: Set On Greater or Equal Than
	EXP: Exponential Base 2
	LOG: Logarithm Base 2
	LIT: Light Coefficients

